Logo EPFL, École polytechnique fédérale de Lausanne

BIOROB

Afficher / masquer le formulaire de recherche
Masquer le formulaire de recherche
  • EN
Menu
  1. Laboratories
  2. Biorobotics Laboratory (BioRob)
  3. Student project list

Project Database

This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects (see https://biorob.epfl.ch/students/ for instructions). To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.

Search filter: only projects matching the keyword Communication are shown here. Remove filter

Amphibious robotics
Computational Neuroscience
Dynamical systems
Human-exoskeleton dynamics and control
Humanoid robotics
Miscellaneous
Mobile robotics
Modular robotics
Neuro-muscular modelling
Quadruped robotics


Amphibious robotics

757 – Development of radio and vision electronics for a salamander inspired robot
Show details
Category:semester project, master project (full-time)
Keywords:Bio-inspiration, Biomimicry, Communication, Electronics, Embedded Systems, Firmware, Programming, Prototyping, Radio, Robotics, Sensor Fusion, Vision, sensor
Type:70% hardware, 30% software
Responsible: (MED 1 1626, phone: 38676)
Description:

This project has been taken.

Pleurobot is a salamander-inspired robot that is capable of moving in and transitioning between terrestrial and aquatic environments. Some research projects in our lab have demonstrated the effectiveness of vision-guided or human-controlled locomotion transition strategies. However, the present Pleurobot is unable to use similar strategies robustly, especially in outdoor environments, because of lacking vision systems or robust wireless controllers.

In this project, the student will need to add vision systems (e.g., RGB-D camera) for Pleurobot that can operate in amphibious environments. In addition, a robust radio controller is needed to operate the robot in outdoor environments. Alternatively, the student can choose to implement algorithms for the vision system for recognizing terrain and obstacles in real-time. Both systems need to be integrated into the ROS 2 controller running on the onboard computer. The major challenges include the requirements for waterproofing, the limited space for electronics, and the fusion of multiple sensory systems in an embedded system.

The student is expected to have a solid background in circuit design for embedded systems, firmware programming, and familiarity with ROS 2. The student who is interested in this project could send his/her transcript, CV, and materials that can demonstrate his/her past project experience to qiyuan.fu@epfl.ch.



Last edited: 02/09/2025

Human-exoskeleton dynamics and control

735 – Hip exoskeleton to assist walking - multiple projects
Show details
Category:semester project, master project (full-time), bachelor semester project, internship
Keywords:Bio-inspiration, C, C++, Communication, Compliance, Control, Data Processing, Dynamics Model, Electronics, Experiments, Inverse Dynamics, Kinematics Model, Learning, Locomotion, Machine learning, Online Optimization, Optimization, Programming, Python, Robotics, Treadmill
Type:30% theory, 35% hardware, 35% software
Responsible: (MED 3 1015, phone: 31153)
Description:Exoskeletons have experienced an unprecedented growth in recent years and hip-targeting active devices have demonstrated their potential in assisting walking activities. Portable exoskeletons are designed to provide assistive torques while taking off the added weight, with the overall goal of increasing the endurance, reducing the energetic expenditure and increase the performance during walking. The design of exoskeletons involves the development of the sensing, the actuation, the control, and the human-robot interface. In our lab, a hip-joint active hip orthosis (“eWalk”) has been prototyped and tested in recent years. Currently, multiple projects are available to address open research questions. Does the exoskeleton reduce the effort while walking? How can we model human-exoskeleton interaction? How can we design effective controls? How can we optimize the interfaces and the control? Which movements can we assist with exoskeletons? To address these challenges, the field necessitates knowledge in biology, mechanics, electronics, physiology, informatics (programming, learning algorithms), and human-robot interaction. If you are interested in collaborating in one of these topics, please send an email to giulia.ramella@epfl.ch with (1) your CV+transcripts, (2) your previous experiences that could be relevant to the project, and (3) what interests you the most about this research topic (to be discussed during the interview).

Last edited: 21/07/2025

Mobile robotics

740 – Firmware development and teleoperation control of robotic assistive furniture
Show details
Category:semester project, master project (full-time)
Keywords:C, C++, Communication, Embedded Systems, Firmware, Linux, Programming, Robotics
Type:10% theory, 20% hardware, 70% software
Responsible: (undefined, phone: 37432)
Description:This project aims to develop an application for remote teleoperation of a swarm of mobile assistive furniture. The developed program allows a user to securely operate mobile furniture remotely as well as define a desired furniture arrangement in the room. On the firmware side, currently we are using Arduino Mega board to control the robot, and rely on ESP32 board or Bluetooth to realize the teleoperation. On the software side, we are using ROS or MQTT to implement the communication, and using Android to implement the tablet control interface. Related work: [1] Real-Time Localization for Closed-Loop Control of Assistive Furniture, Published in: IEEE Robotics and Automation Letters ( Volume: 8, Issue: 8, August 2023) https://ieeexplore.ieee.org/document/10155264 [2] Velocity Potential Field Modulation for Dense Coordination of Polytopic Swarms and Its Application to Assistive Robotic Furniture, Published in: IEEE Robotics and Automation Letters ( Volume: 10, Issue: 7, July 2025) https://ieeexplore.ieee.org/document/11027457

Last edited: 24/08/2025

3 projects found.

Quick links

  • Teaching and student projects
    • Project database
    • Past student projects
    • Students FAQ
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • Alessandro Crespi
  • +41 21 693 66 30
Accessibility Disclaimer

© 2025 EPFL, all rights reserved