Project Database
This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects (see https://biorob.epfl.ch/students/ for instructions). To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.
Search filter: only projects matching the keyword sensor are shown here. Remove filter
Amphibious robotics
Computational Neuroscience
Dynamical systems
Human-exoskeleton dynamics and control
Humanoid robotics
Miscellaneous
Mobile robotics
Modular robotics
Neuro-muscular modelling
Quadruped robotics
Miscellaneous
| 761 – Developing an IMU-based algorithm to quantify the workload of soccer goalkeepers |
| Category: | master project (full-time) | |
| Keywords: | Motion Capture, Programming, Python, sensor | |
| Type: | 20% theory, 80% software | |
| Responsible: | (MED 0 1016, phone: 32468) | |
| Description: | Workload monitoring is a fundamental component in designing and optimizing training sessions for athletes. In football, several established methods exist to assess the workload during training and matches—particularly for outfield players. However, these methods often fall short when applied to goalkeepers, whose movements and physical demands differ significantly. As a result, there is currently no widely accepted or accurate approach for quantifying goalkeeper workload. This project aims to bridge that gap by developing a reliable method for monitoring and estimating the workload of football goalkeepers. Data will be collected during structured goalkeeper training sessions using a combination of video recordings and Inertial Measurement Unit (IMU) sensors, following a carefully designed protocol. The dataset will capture key movement patterns specific to goalkeeping, such as jumping, diving, lateral shuffling, and rapid direction changes. Using this data, the project will involve the development of an algorithm capable of analysing these movements and estimating the overall workload of a session. The algorithm will classify and quantify various types of activities, providing objective metrics that can inform training design, load management, and performance evaluation tailored specifically to goalkeepers. * Data collection is a part of project Last edited: 29/08/2025 | |
One project found.