Logo EPFL, École polytechnique fédérale de Lausanne

BIOROB

Afficher / masquer le formulaire de recherche
Masquer le formulaire de recherche
  • EN
Menu
  1. Laboratories
  2. Biorobotics Laboratory (BioRob)
  3. Student project list

Project Database

This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects (see https://biorob.epfl.ch/students/ for instructions). To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.

Search filter: only projects matching the keyword Linux are shown here. Remove filter

Amphibious robotics
Computational Neuroscience
Dynamical systems
Human-exoskeleton dynamics and control
Humanoid robotics
Miscellaneous
Mobile robotics
Modular robotics
Neuro-muscular modelling
Quadruped robotics


Computational Neuroscience

755 – High-performance enconder-decoder design for computational neural signal processing
Show details
Category:semester project, master project (full-time), internship
Keywords:Computational Neuroscience, Data Processing, Linux, Programming, Python
Type:20% theory, 5% hardware, 75% software
Responsible: (MED11626, phone: 41783141830)
Description:Background Brain-computer interfaces (BCIs) using signals acquired with intracortical implants have enabled successful high-dimensional robotic device control, making it possible to complete daily tasks. However, the substantial amount of medical and surgical expertise required to correctly implant and operate these systems greatly limits their use beyond a few clinical cases. A non-invasive counterpart that requires less intervention and can provide high-quality control would profoundly improve the integration of BCIS into multiple settings, representing a nascent research field known as brain robotics. However, this is challenging due to the inherent complexity of neural signals and difficulties in online neural decoding with efficient algorithms. Moreover, brain signals created by an external stimulus (e.g., vision) are most widely used in BCI-based applications; however, they are impractical and infeasible in dynamic yet constrained environments. A question arises here: "How to circumvent constraints associated with stimulus-based signals? Is it feasible to apply non-invasive BCIS to read brain signals, and how to do so?". To take a step further, I wonder if it would be possible to accurately decode complete, semantic-based command phrases in real time and further achieve seamless and natural brain-robot systems for control and interaction? The project is for a team of 1-2 Master's students, and breakdown tasks will be assigned to each student later according to their skill set. What needs to be implemented and delivered at the end of the project? 1) A method package of brain signal (MEG and EEG) pre-processing and feature formulation 2) An algorithm package of an encoder and a decoder of neural signals. 3) A model of training brain signals with spatial and temporal features. Importance: We have well-documented tutorials on how to use the brain signal dataset, how to use the HPC cluster to train the encoder and decoder, and a complete pipeline to decode EEG-image pairs and MEG-Audio pairs.

Last edited: 10/11/2025

Mobile robotics

740 – Firmware development and teleoperation control of robotic assistive furniture
Show details
Category:semester project, master project (full-time)
Keywords:C, C++, Communication, Embedded Systems, Firmware, Linux, Programming, Robotics
Type:10% theory, 20% hardware, 70% software
Responsible: (undefined, phone: 37432)
Description:This project aims to develop an application for remote teleoperation of a swarm of mobile assistive furniture. The developed program allows a user to securely operate mobile furniture remotely as well as define a desired furniture arrangement in the room. On the firmware side, currently we are using Arduino Mega board to control the robot, and rely on ESP32 board or Bluetooth to realize the teleoperation. On the software side, we are using ROS or MQTT to implement the communication, and using Android to implement the tablet control interface. Related work: [1] Real-Time Localization for Closed-Loop Control of Assistive Furniture, Published in: IEEE Robotics and Automation Letters ( Volume: 8, Issue: 8, August 2023) https://ieeexplore.ieee.org/document/10155264 [2] Velocity Potential Field Modulation for Dense Coordination of Polytopic Swarms and Its Application to Assistive Robotic Furniture, Published in: IEEE Robotics and Automation Letters ( Volume: 10, Issue: 7, July 2025) https://ieeexplore.ieee.org/document/11027457

Last edited: 24/08/2025

2 projects found.

Quick links

  • Teaching and student projects
    • Project database
    • Past student projects
    • Students FAQ
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • Alessandro Crespi
  • +41 21 693 66 30
Accessibility Disclaimer

© 2025 EPFL, all rights reserved