Logo EPFL, École polytechnique fédérale de Lausanne

BIOROB

    Afficher / masquer le formulaire de recherche
    Masquer le formulaire de recherche
    • EN
    Menu
    1. Laboratories
    2. Biorobotics Laboratory (BioRob)
    3. Teaching and student projects
    4. Student project list

    Project Database

    This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects (see https://biorob.epfl.ch/students/ for instructions). To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.

    Search filter: only projects matching the keyword Learning are shown here. Remove filter

    Amphibious robotics
    Computational Neuroscience
    Dynamical systems
    Human-exoskeleton dynamics and control
    Humanoid robotics
    Miscellaneous
    Mobile robotics
    Modular robotics
    Neuro-muscular modelling
    Quadruped robotics


    Human-exoskeleton dynamics and control

    735 – Hip exoskeleton to assist daily activities
    Show details
    Category:semester project, master project (full-time), internship
    Keywords:Bio-inspiration, C, C++, Communication, Compliance, Control, Data Processing, Dynamics Model, Electronics, Embedded Systems, Experiments, Inverse Dynamics, Kinematics Model, Learning, Locomotion, Machine learning, Online Optimization, Optimization, Programming, Python, Robotics, Treadmill
    Type:30% theory, 35% hardware, 35% software
    Responsible: (MED 3 1015, phone: 31153)
    Description:Exoskeletons have experienced an unprecedented growth in recent years, and portable active devices have demonstrated their potential in assisting locomotion activities, increasing endurance, and reducing the walking effort. In our lab, a hip active orthosis (“eWalk”) has been prototyped and tested in recent years. Some projects will be available to address open research questions revolving around the topics of control, experimental evaluations, sensing, and embedded systems optimization. If you are interested in collaborating in one of these topics, please send an email to giulia.ramella@epfl.ch with (1) your CV+transcripts, (2) your previous experiences that could be relevant to the project, and (3) what interests you the most about this research topic (to be discussed during the interview). Please send the email from your institutional account, and include the type of project and in which semester you are interested in doing the collaboration.

    Last edited: 17/11/2025

    Quadruped robotics

    A small excerpt of possible projects is listed here. Highly interested students may also propose projects, or continue an existing topic.

    769 – Learning Morphology-Specific Emergence of Gaits
    Show details
    Category:master project (full-time)
    Keywords:Biomimicry, Computational Neuroscience, Learning, Python, Simulator
    Type:20% theory, 80% software
    Responsible: (MED 1 1226, phone: 32658)
    Description:Why do horses and and camels both walk at slow speeds and gallop at fast speeds, but at intermediate speeds horses prefer to trot while camels pace? While gait transitions have been well studied for a given morphology, these models rarely explain when and why animals prefer different or gaits despite being quite similar, or the same gaits despite having very different morphologies. This project tackles this question through the lens of reinforcement learning (RL), with a focus on the role of entrainment between an internal oscillator model and the mechanical dynamics, i.e the morphology. You will explore both top-down and bottom-up coupling mechanisms, unconventional reward functions such as viability measures, and benchmark these approaches across different morphological parameters (e.g length-to-height and width-to-height ratios, mass). Stretch goals can include evaluating the role of active exploration in a hierarchical RL setup, exploring sprawling or bipedal morphologies, changing morphology during learning (e.g. growth), or you may propose something in discussion with the supervisors.

    NOTE: this is a collaboration project, to be conducted at Cornell University, USA.

    Last edited: 02/12/2025


    Mobile robotics

    754 – Vision-language model-based mobile robotic manipulation
    Show details
    Category:semester project, master project (full-time), internship
    Keywords:Control, Experiments, Learning, Python, Robotics, Vision
    Type:30% theory, 10% hardware, 60% software
    Responsible: (MED11626, phone: 41783141830)
    Description:INTRODUCTION Recent vision-language-action models (VLAs) build upon pre-trained vision-language models and leverage diverse robot datasets to demonstrate strong task execution, language-following ability, and semantic generalisation. Despite these successes, VLAs struggle with novel robot setups and require fine-tuning to achieve good performance; however, the most effective way to fine-tune them is unclear, given the numerous possible strategies. This project aims to 1) develop a customised mobile robot platform that is composed of a customised and ROS2-based mobile base and robot arms with 6DOF (ViperX 300 S and Widowx 250), and 2) establish a vision system equipped with RGBD cameras which is used for data collection, 3) deploy a pre-trained VLA model locally for robot manipulation by using reinforcemnet and imittaion learning, with a focus of household environment, and 4) platform testing, validation and delivery. Excellent programming skill (Python) is a plus. Importance: We have well-documented tutorials of how to use robots, teleoperation for data collection, how to use the HPC cluster, and a complete pipeline to train robot policy. For applicants not from EPFL, to obtain the student status at EPFL, the following conditions must be fulfilled (an attestation has to be provided during the online registration): [1] To be registered at a university for the whole duration of the project [2] The project must be required in the academic program and recognised by the home university [3] The duration of the project is a minimum of 2 months and a maximum of 12 months [4] To be accepted by an EPFL professor to do a project under his supervision For an internship, six months at least is suggested. WHAT WE HAVE: [1] Ready-and-easy-to-use robot platforms: including ViperX 300S and WidowX-250, configured with 4 RealSense D405, various grippers, and mobile robot platform [2] Computing resources: TWO desktop PC with NVIDIA GPU 5090 and 4090 [3] HPC cluster with 1000h/month on NVIDIA A100 and A100fat : can use 1000 hours of A100 and A100 fat NVIDIA GPU every month, supports large-scale training and fine-tuning. Interested students can apply by sending an email to sichao.liu@epfl.ch. Please attach your transcript and past/current experience on the related topics. The position is open until we have final candidates. Otherwise, the position will be closed. Recommend to read: [1] LeRobot: Making AI for Robotics more accessible with end-to-end learning, https://github.com/huggingface/lerobot [2] Kim, Moo Jin, Chelsea Finn, and Percy Liang. "Fine-tuning vision-language-action models: Optimizing speed and success." arXiv preprint arXiv:2502.19645 (2025). [3] https://docs.trossenrobotics.com/aloha_docs/2.0/specifications.html [4] Lee BK, Hachiuma R, Ro YM, Wang YC, Wu YH. Unified Reinforcement and Imitation Learning for Vision-Language Models. arXiv preprint arXiv:2510.19307. 2025 Oct 22. Benchmark: [1] LeRobot: Making AI for Robotics more accessible with end-to-end learning [2] DROID: A Large-Scale In-the-Wild Robot Manipulation Dataset [3] DiT-Block Policy: The Ingredients for Robotic Diffusion Transformers [4] Open X-Embodiment: Robotic Learning Datasets and RT-X Models Please come to office MED01612

    Last edited: 11/12/2025

    3 projects found.

    Quick links

    • Teaching and student projects
      • Project database
      • Past student projects
      • Students FAQ
    Logo EPFL, École polytechnique fédérale de Lausanne
    • Contact
    • Alessandro Crespi
    • +41 21 693 66 30
    Accessibility Disclaimer

    © 2026 EPFL, all rights reserved