Project Database
This page contains the database of possible research projects for master and bachelor students in the Biorobotics Laboratory (BioRob). Visiting students are also welcome to join BioRob, but it should be noted that no funding is offered for those projects (see https://biorob.epfl.ch/students/ for instructions). To enroll for a project, please directly contact one of the assistants (directly in his/her office, by phone or by mail). Spontaneous propositions for projects are also welcome, if they are related to the research topics of BioRob, see the BioRob Research pages and the results of previous student projects.
Search filter: only projects matching the keyword Simulator are shown here. Remove filter
Amphibious robotics
Computational Neuroscience
Dynamical systems
Human-exoskeleton dynamics and control
Humanoid robotics
Miscellaneous
Mobile robotics
Modular robotics
Neuro-muscular modelling
Quadruped robotics
Amphibious robotics
746 – Developing a fluid-body simulator to study collective behavior in water |
Category: | semester project, master project (full-time) | |
Keywords: | C++, Python, Simulator | |
Type: | 20% theory, 80% software | |
Responsible: | (MED 1 1024, phone: 30563) | |
Description: | Efficient swimmers rely on sensing the local changes in surrounding waters and use them to their advantage. For example, fishes swimming in water can sense local deformations generated by the vortices generate by surrounding fishes and swim in school formations to reduce the energetic cost. What are the key components of these behaviors? In this project, you will study this problem in simulation. Previous simulations of movement of body in fluid consider overly simplified fluid models, that does not capture the fluid dynamics, or simplified body models. We recently developed a new fluid-body simulator that can simulate the dynamics of complex rigid body geometries, similar to that of a real fishes and robots, and the dynamics of the fluid. This allows the study of collective behaviors like schooling and the incorporation of water sensing. The main goal of this project is to continue the development of the fluid solver in PyTorch, and test the ability of the model to generate self-propelled swimming. The goals can be divided in four subgoals (in order of priority): 1. Implement an interpolation method for the body fitted meshes to compute the velocities of the bodies in the fluid solver. 2. Improve the simulator's performance by porting part of the fluid solver in C++/CUDA by writing a PyTorch extension. 3. Validate the solver based on traditional benchmark tests and particle image velocimetry data from a swimming robot, and against simpler drag based fluid models. 4. Test and refine the implementation of the forces acting from the fluid to the body. Last edited: 15/11/2024 |
Quadruped robotics
A small excerpt of possible projects is listed here. Highly interested students may also propose projects, or continue an existing topic.
743 – Quadruped Robot Projects (Several) |
Category: | semester project, master project (full-time) | |
Keywords: | Agility, Artificial muscles, Bio-inspiration, C++, Computer Science, Control, Experiments, Learning, Locomotion, Machine learning, Muscle modeling, Online Optimization, Optimization, Programming, Python, Quadruped Locomotion, Robotics, Simulator, Vision | |
Type: | 10% theory, 20% hardware, 70% software | |
Responsible: | (MED 1 1024, phone: 37506) | |
Description: | There are several quadruped robot projects available related to locomotion, jumping, and human-robot interaction, with methodologies including deep reinforcement learning, imitation learning, optimal control, and computer vision. Students who already have experience with deep learning, C++, vision, and who have worked with hardware are especially encouraged to apply. Please send Guillaume your CV, transcript, and explain your motivation on what kind of topics you would be interested in working on (more details = better!). Last edited: 18/07/2024 |
2 projects found.