Development and testing of radio modules for robot communication

Semester Project

Arthur Gay

EPFL

June 2017
Replace the current transceiver \textbf{nRF905} in amphibious robots with a better transceiver.
Identified Requirements

- 433 MHz or 868 MHz
- Transceiver: RX and TX
- Well documented
- Widely available
Survey of Available Transceivers

13 transceivers from 10 manufacturers.

Criteria:

- RX Sensitivity
- TX Power
- datarate
- package, RX current, TX current
- documentation
- features and ease of use
- availability
<table>
<thead>
<tr>
<th>Part</th>
<th>Mfr.</th>
<th>RX Sensitivity</th>
<th>TX power</th>
<th>Max data</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2-LP</td>
<td>ST</td>
<td>-130dBm</td>
<td>+16dBm</td>
<td>500kbps</td>
</tr>
<tr>
<td>SPIRIT1</td>
<td>ST</td>
<td>-118dBm</td>
<td>+16dBm</td>
<td>500kbps</td>
</tr>
<tr>
<td>Si4455</td>
<td>SiLabs</td>
<td>-116dBm</td>
<td>+13dBm</td>
<td>500kbps</td>
</tr>
<tr>
<td>MRF89XA</td>
<td>Microchip</td>
<td>-113dBm</td>
<td>+12.5dBm</td>
<td>200kbps</td>
</tr>
<tr>
<td>CC1310</td>
<td>TI</td>
<td>-124dBm</td>
<td>+15dBm</td>
<td>50kbps</td>
</tr>
<tr>
<td>nRF905</td>
<td>NRF</td>
<td>-100dBm</td>
<td>+10dBm</td>
<td>50kbps</td>
</tr>
<tr>
<td>ATA5428</td>
<td>Atmel</td>
<td>-116.5dBm</td>
<td>+10dBm</td>
<td>20kbps</td>
</tr>
<tr>
<td>ADF7020</td>
<td>analog</td>
<td>-119dBm</td>
<td>+13dBm</td>
<td>200kbps</td>
</tr>
<tr>
<td>ADF7025</td>
<td>analog</td>
<td>-104.2dBm</td>
<td>+13dBm</td>
<td>384kbps</td>
</tr>
<tr>
<td>RF69W</td>
<td>hoperf</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CMT2300A</td>
<td>cmostek</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAX2904</td>
<td>maxim</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Chips comparison, ordered from best to worst performance.
Survey of Available Transceivers

Overall performances:

- **S2-LP**
- **SPIRIT1**
- **Si4455**
- **MRF89XA**
- **CC1310**
- **nRF905**
Available Parameters:

- frequency
- modulation
- datarate
- frequency deviation
- bandwidth
- output power
Measurable performance:

- range
- RSSI
- packet loss
- preamble quality indicator
- synchronization quality indicator
Testing and Evaluation of the SPIRIT1

Radio modules for robot communication

June 2017 10 / 30
Testing and Evaluation of the SPIRIT1

UART protocol

RF protocol
Testing and Evaluation of the SPIRIT1 UART protocol

<table>
<thead>
<tr>
<th>Start=0xA5</th>
<th>Length</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

![Diagram](image)
Testing and Evaluation of the SPIRIT1
UART protocol: generator

- definition.xml
- Generator
- constants.h
- constants.py
- callbacks.c/h
<?xml version="1.0"?>
<protocol>
 <constants>
 <constant>
 <name>CONSTANT_NAME</name>
 <description>
 Constant description for documentation purpose which is added as comment in the generated source files.
 </description>
 <value>![CDATA[(1<<0) // Arbitrary code]]></value>
 </constant>
 </constants>
 <registers>
 <register>
 <name>REGISTER_NAME</name>
 <description>
 Register description for documentation purpose which is added as comments in the generated source files.
 </description>
 <address>0x0001</address> <!-- The address is 18 bits long. -->
 <length>1</length> <!-- The indicative length < 64 -->
 </register>
 </registers>
</protocol>
Testing and Evaluation of the SPIRIT1 UART protocol: Streamed Variables

```
SVLST
SVITM 0x00,0x01,'VARNAME0\0'
SVITM 0x01,0x01,'VARNAME1\0'
SVITM 0x02,0x01,'VARNAME2\0'
SVITM 0x03,0x01,'VARNAME3\0'
SVITM...
SVVAL,0x00,0x0032B32B
SVVAL...
```
Testing and Evaluation of the SPIRIT1 Radio protocol

Three commands:

1. NOP: empty packet. (PING)
2. ACK: response to NOP. (PONG)
3. RADIOCONF: new radio configuration.
Testing and Evaluation of the SPIRIT1 GUI Interface

![Generic Radio Evaluation Software](image)

<table>
<thead>
<tr>
<th>COM port</th>
<th>COM4</th>
<th>Reconnect</th>
<th>WP# 1</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0 RSSI</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1 PQI</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2 SQL</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x3 Acknowledged</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x4 Not acknowledged</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x5 Sent</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x6 Round-trip time</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x7 From</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x8 Burst</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **xtal_offset_ppm**: 0
- **frequency_base**: 868000000
- **channel_space**: 100000
- **channel_number**: 0
- **modulation_select**: 0
- **datarate**: 500000
- **freq_dev**: 125000
- **bandwidth**: 800100

Buttons: Read from device, Write to device, Send to peer, REINIT, Burst
Results
Antenna characterization

RSSI with respect of rotation around z axis of the receiving node

Arthur Gay (EPFL) Radio modules for robot communication June 2017
Results
Antenna characterization

RSSI with respect of rotation around y axis of the receiving node

Arthur Gay (EPFL)
Antenna characterization

RSSI with respect of rotation around x axis of the receiving node
Results

Antenna characterization

RSSI with respect to the orientation

Orientation

Arthur Gay (EPFL)
Radio modules for robot communication
June 2017
Range comparison of FSK and MSK in two environments
Module

Radio modules for robot communication

June 2017
Possible failure causes:

“The LOCKWON state may persist indefinitely in two cases:

- in case of hardware problem (bad XTAL or chip soldering).
- if a TX, LOCKTX, RX, LOCKRX command is sent with a bad VCO calibration word (RCO_VCO_CALIBR_IN[1:0]) or if the VCO calibration fails.”

Possible solution: standard schematic instead of TX boost mode.
<table>
<thead>
<tr>
<th>RIR</th>
<th>Frequency band</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIR1008–06</td>
<td>868.0–868.6 MHz</td>
<td>25 mW e.r.p. / 1 % DC</td>
</tr>
<tr>
<td>RIR1008–07</td>
<td>868.7–869.2 MHz</td>
<td>25 mW e.r.p. / 0.1 % DC</td>
</tr>
<tr>
<td>RIR1008–20</td>
<td>863.0–870.6 MHz</td>
<td>25 mW e.r.p. / 0.1 % DC / FHSS</td>
</tr>
<tr>
<td>RIR1008–21</td>
<td>865.0–868.0 MHz</td>
<td>25 mW e.r.p. / 1 % DC / FHSS</td>
</tr>
</tbody>
</table>

SPIRIT1 hop time: 54 μs
nRF905 hop time: 650 μs