Midterm – Presentation

Model-Based control approaches for the locomotion of legged robot

Semester Project By:
Salman Faraji
Assistants: Soha Pouya
Rico Möckel

April 20th, 2012
The goal of this project is to incorporate the knowledge of the robot’s dynamics available in its model to improve controlling performance.

General requirement in motion of legged robots is **exact movement** while having as less contact forces as possible i.e. compliant control.
A brief literature review done over similar approaches:
- Virtual model control
- Potential field approach
- Impedance control
- Inverse dynamics control

Among these methods, Inverse dynamics can result in exact position control while minimizing contact forces.
The method is first used to control a Monoped robot. Then, it is extended to a quadruped one. What we need:

- The role of feed forward block is to give a good estimate of the forces required to follow a desired trajectory.

What we currently have:
- An open loop periodic solution optimized for energy
- Idea: use them as desired trajectories!
Step I. Implement Inverse Dynamics

- Contact forces depend on actuators and vice versa.
- A method decouples them

\[M(q) \ddot{q} + h(q, \dot{q}) = S^T \tau + J_C^T(q) \lambda \]

\[J_C^T = Q \begin{bmatrix} R \\ 0 \end{bmatrix} \]

\[\tau = (S_u Q^T S^T)^+ S_u Q^T [M \ddot{q}_d + h] \]

- We feed the system the calculated torques from desired trajectories we have.
- Does it work forever? Stability?
Step I: Implement Inverse Dynamics

- Desired
- Output

Can’t continue forever!
Rough terrains?
Hybrid states?
Other scenarios?
Step II. Trajectory planner

- How could we modify trajectories?
- Idea: use known trajectories + transitions
- @ Fly: control attack angle = $\alpha \times$ horizontal speed
 Feedback
- @ Stance: control $\phi = 0$
 Feedback + feed-forward
- Idea of soft transition: at phase changes, preserve previous variable and its derivative while forcing desired trajectories
- Exponential choice has damping property.

$$q_{new}(t - t_0) = a(t - t_0) \times q_{old}(t - t_0) + b(t - t_0) \times q_{desired}(t - t_0)$$

$a(0) = 1, a(T) = 0, b(0) = 0, b(T) = 1$
$\dot{a}(0) = 0, \dot{a}(T) = 0, \dot{b}(0) = 0, \dot{b}(T) = 0$

$$a(t) = e^{-(t/\tau)^2}$$
$$b(t) = 1 - e^{-(t/\tau)^2}$$
Structure of controller:
Step II, Trajectory planner

- Desired
- Output

Stance
Step II. Trajectory planner

Phase 1, Stance

Phase 2, Fly

Quick damping

Slow damping

Soft transitions
Step II: Trajectory planner

- Steady State Forces/Torques

For ϕ

For l

Stance
Step II: Trajectory planner

- natural moving on a rough terrain
Step III. High level planner

- Need to modify trajectories to Handle:
 - More complex terrains like stairs, ramps
 - uncertainties
- Idea: Incorporate a high-level Self Organized Controller

\[y_{\text{desired, modified}}(t - t_0) = (y_{\text{desired}}(t - t_0) - \text{bias}) \times (1 + |u|/5) + \text{bias} \]
\[\phi_{\text{desired, modified}}(t - t_0) = 0 + u \]
Step III, High level planner

1. Double slopes scenario
Step III. **High level planner**

2. Controlling over average speed
To be done ...

- Possibly on monoped:
 - Switch to change attack angle with high-level controller
 - Comparison to similar works

- Switch to quadruped:
 - Implement Inverse dynamics
 - Adjust weightings so that feed-forward solution adapts to imposed conditions
 - Defining transitions
 - Use of operational space controllers to have more meaningful transitions
 - Incorporating the high-level controller
Thank you!
Any question?
Fuzzy SOC

Performance measure

Model

Rule modifier

Credit assignment
Fuzzy SOC

Control Table \((nT + T)\)

Control Table \((nT)\)

<table>
<thead>
<tr>
<th>E</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Performance Measure

<table>
<thead>
<tr>
<th>E</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
</tr>
</tbody>
</table>