“Fetch the ball, Oncilla!”

Semester Project in Micro-engineering

Laetitia Perroud

Supervisor: Prof. Auke Jan Ijspeert
Assistant: Mostafa Ajallooeian
Project description and motivation

- Goal: have the Oncilla robot follow a ball
 - Ball tracking (where is the ball?)
 - Locomotion toward the ball
- Part of the AMARSi project
- Nice behavior to make the robot look more like a real animal
Simplified world

- First draft on a simplified world:
 - No locomotion
 - Simple control

- Fixed robot with rotative camera which can also translate

- Goal: rotate the camera until the ball is centered and at a suitable distance
Simplified world

- For each control step:
 - Take a picture with camera
 - Threshold the image to keep only red (B)
 - Calculate ball area and center of mass:
 \[
 A = \sum_{i=1}^{N} \sum_{j=1}^{M} B[i,j]
 \]
 \[
 x_0 = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} j \cdot B[i,j]}{A}
 \]
 \[
 y_0 = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} i \cdot B[i,j]}{A}
 \]
 - Use PID-controllers on the rotation and translation to keep \(x_0 \) in the middle and \(A \) around a certain value
Ball detection

- Works fine when image completely inside
- Detection when ball is partially inside the image
- Find 3 suitable points to estimate radius and center of the ball
Implementation on Oncilla

Locomotion profiles

Yaw offset

Reference:

- Add vision and include it to the locomotion control
Implementation on Oncilla

• The robot should accelerate when the ball is far away and slow down when it comes closer
 – PID-controller on the speed depending on the ball size
• The robot should turn in order to keep the ball in front on it
 – PID-controller on the yaw_offset, which allows the robot to turn, to keep x0 in the middle of the image
Noise and Filter

- In order to reduce the noise, a weighted moving average filter is implemented on the ball area and center of mass. For each input data, the output is the weighted average of the N (50) previous data with decreasing weight.

Before

After
Implementation on the real robot

- Oncilla currently works on open loop
 - Enough for flat ground
- On open loop there is no posture control
 - Abduction / adduction movement not defined
 - No turning available

Reference:
Enable Turning

- Design a pattern for abduction/adduction
 - Draw foot trajectory and use inverse kinematics
 - Copy pattern from protraction/retraction joint
 - Poor overall results in simulation
- Altering the foot trajectory
 - Legs on one side will have shorter stride length than on the other side thus making the robot turn
Adding vision

- Simple webcam fixed in front of Oncilla
Image processing modification

- Goal: detect a ball of a given color in any environment

- Algorithm:
 - Conversion from RGB to HSV
 - Threshold on H and S to form binary image

Reference:
Image processing modification

• Algorithm:
 - Erosion filter to remove small blobs
 - Project the image onto x and y axis
 - Assuming the ball is the biggest blob, keep only the biggest 1D connected component on x and y
 - Limit additional image processing to the box defined previously
Results

- Red
Results

- Blue
Results

- Green
Results

- Yellow
Implementation on on-board computer

- Vision library used: Video4Linux (V4L)
- It takes around 35ms to grab a picture and save it for further processing
 - Too slow, cycle refresh time of Oncilla: 5ms!
 - Solution: take picture and find ball location continuously in a parallel thread
Control and Tuning

- Control analog to simulation but with P-controllers
- Less agility because of open loop
 - Maximum speed: 0.4m/s
 - Turning coefficient bounded between -0.3 and 0.3
- In place turning when no ball is seen
 - Speed = 0.3m/s, turning coef = ±1
- Moving average filter of length N=3
Noise reduction

- The ball detection algorithm will always detect the biggest object of the given color
 - Problem when the ball is not in the field view
Noise reduction

- **Solution:** Discard any input values when the difference between the current value of the area and the previous one is more than a certain amount.
Results
Conclusion

- Oncilla is following the ball if the ball is not moved too fast
- Possible improvements:
 - Improve dynamics by:
 - Faster computation time
 - Closed loop control