Online Adaptation of Locomotion Control to Changes in Body Structure

Michka Mélo

Biorobotics Laboratory, STI, EPFL
Supervisors: Rico Möckel, Soha Pouya, Stéphane Bonardi
Prof. Auke Jan Ijspeert
Motivation

• Improve the robot locomotion by making it aware of its body.

• Allow injured robots to keep moving.
Outline

• Robotic Platform : Roombots
• Tools and Strategy for the Project
• More details : Graph Representation
Roombots

• Reconfigurable robots for adaptative furniture.

• At the module level:
 • Three degrees of freedom
 • Ten connectors

• At the metamodule level:
 • Four connection types.

A piece of adaptative furniture [Sproewitz, 2010]
Locomotion control and optimization

- Locomotion is controlled by **Central Pattern Generator (CPG)**
 - Network of coupled phase oscillators
 - One oscillator per degree of freedom
 - Servo inputs derived from state variables of CPG

- Evolution of CPG parameters using **Particle Swarm Optimization (PSO)**
 - Population-based optimization method based on cooperation
 - Fitness computed from locomotion velocity

This is implemented in the Biorob Optimization Framework by Jesse van den Kieboom.
Tools

Robot Structure Analyzer

Limb/Body Finder

Symmetry Finder

Similarity Finder

CPG Generator

CPG

PSO
Graph Representation

- **Topology**
 - CPG Network
 - Parameters

- **Search Table**
 - CPG Network
 - Graph Representation
 - Topology
 - Parameters

- **Robot**
 - Webots files provided by Soha Pouya.

- **Optimization**

- **Similarity Measure**

<table>
<thead>
<tr>
<th>Ri</th>
<th>Xi</th>
<th>(\psi_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td></td>
<td>j=1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>i=n</td>
<td></td>
<td>j=n</td>
</tr>
</tbody>
</table>
Geometrical Graph Representation

Implemented by Stéphane Bonardi.

• One node per module.

• Ten connector types per module.

• Four connection types between modules.

Webots files provided by Soha Pouya.
Body / Symmetry Finder

Implemented by Stéphane Bonardi.

- Find body
- Label connections
- Find symmetries

Webots files provided by Soha Pouya.
Geometrical Graph Representation

Quad5_PER

Quad6_PAR

Webots files provided by Soha Pouya.
Functional Graph Representation

- One node per module
- Ten connector types per module
- Four connection types between the modules.

- One node per sphere
- Two connector types per sphere
- Four connection types between the spheres.

Single module picture [Pouya, 2010]
Webots files provided by Soha Pouya.
Future Work

Robot Structure Analyzer

Body/Limb Finder

Symmetry Finder

Similarity Finder

Rules

CPG Generator

CPG

PSO
References

- (1) http://www.nature.com/nrn/journal/v6/n6/images/nrn1686-f1.jpg
- (3) http://www.gamasutra.com/features/20051213/figure2.gif