Mobile control interface for modular robots
Semester project, fall 2010

Gilles Cressier
Biorobotics Laboratory

Advisors:
Prof. Auke Jan Ijspeert
Rico Möckel
Stéphane Bonardi
Outline

1. Goals and challenge
2. Case study
3. Specifications
4. Conclusion
Goal of the project: Design a graphic interface to control the Roombots.

source: http://biorob.epfl.ch/research/modular

Figure: Synthetic image of the Roombots.
Goal of the project:
Design a graphic interface to control the Roombots.

The interface would:

- Run on several type of platform (tabletPC, but also PC, smartphone?).

source: http://biorob.epfl.ch/research/modular

Figure: Synthetic image of the Roombots.
Goal of the project:
Design a graphic interface to control the Roombots.

The interface would:

- Run on several types of platform (tabletPC, but also PC, smartphone?).
- Be usable by people from the Biorobotics Laboratory for testing, sensing.

source: http://biorob.epfl.ch/research/modular

Figure: Synthetic image of the Roombots.
Goal of the project:
Design a graphic interface to control the Roombots.

The interface would:
- Run on several type of platform (tabletPC, but also PC, smartphone?).
- Be usable by people from the Biorobotics Laboratory for testing, sensing.
- Be usable by lay users during presentations and demos.

source: http://biorob.epfl.ch/research/modular

Figure: Synthetic image of the Roombots.
Target user:

![Diagram showing the number of features required given the level of the user.]

Figure: Number of features required given the level of the user.
Target platform:

Figure: Variety of inputs and resources specificity given the device.
What is the better way to represent the Roombots?
What is the better way to represent the Roombots?

How will the user interact with the software?
- What is the better way to represent the Roombots?
- How will the user interact with the software?
- What about software-Roombots interactions?
What is the better way to represent the Roombots?
How will the user interact with the software?
What about software-Roombots interactions?
How should the software interpret touchscreen/accelerometer inputs?
What is the better way to represent the Roombots?

How will the user interact with the software?

What about software-Roombots interactions?

How should the software interpret touchscreen/accelerometer inputs?

→ Study existing applications!
What is the better way to represent the Roombots?
How will the user interact with the software?
What about software-Roombots interactions?
How should the software interpret touchscreen/accelerometer inputs?

→ Study existing applications!

"Study of the usage of touchscreen and accelerometer on small devices."
Example of studied case:

Perceptive Pixel: Multitouch Wall

Figure: http://www.calvin.edu
Notion of Couple:

A *couple* is a set of degrees. Each element of the set is associated in the set with a *ratio*.
When we order an action to the *couple*, the *ratio* will determine the action that will be ordered to the associated degree.
Notion of Sequence:

A *sequence* is a set of time-dependant actions. A *sequence* contain a set of assertions (over the initial configuration/position) the Roombots has to fulfill without what the sequence can’t be run.
Notion of Sequence:

A *sequence* is a set of time-dependant actions. A *sequence* contain a set of assertions (over the initial configuration/position) the Roombots has to fulfill without what the sequence can’t be run.

Figure: The chronograph: a time manager.
Four modes for the interface:
Four modes for the interface:

- Assembly mode
Four modes for the interface:

- Assembly mode
- Sequence editor
Four modes for the interface:

- Assembly mode
- Sequence editor
- Low-level mode
Four modes for the interface:

- Assembly mode
- Sequence editor
- Low-level mode
- High-level mode
Four modes for the interface:

- Assembly mode
- Sequence editor
- Low-level mode
- High-level mode

Figure: Example of usage of different modes.
Four modes for the interface:

- Assembly mode
- Sequence editor
- Low-level mode
- High-level mode

Figure: Example of usage of different modes.

All this mode will be display on the top of the visualisation of the Roombots.
Suppose that a λ-user is in high-level mode, in a locomotion environment.

source: http://birg.epfl.ch/page68135.html
Suppose that a λ-user is in high-level mode, in a locomotion environment.

Then we can suggest him some sequences that are saved and for which the assertions are respected.
What will I do now?
What will I do now?

- Improve specifications file by adding examples of usage.
What will I do now?

- Improve specifications file by adding examples of usage.
- Implement a 3D perspective for the visualisation using Ogre3D library.
What will I do now?

- Improve specifications file by adding examples of usage.
- Implement a 3D perspective for the visualisation using Ogre3D library.
- Implement the different modes and write code documentation.
Thank you for your attention.

Questions?